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An oscillator traversing an elastic continuum, often referred to as the moving-oscillator
problem, is representative of many common engineering systems. A clear example of such
a system in the civil engineering field is a vehicle crossing a bridge. Due to the dynamic
interaction between the two subsystems, vibrations generated as the vehicle traverses the
continuum cause deflections which may be significantly larger than those generated when
such interaction is neglected. The goal of this thesis is to develop a control system that can
reduce the dynamic responses of the combined system. A series expansion is used to
model the continuum, which, when combined with a single degree of freedom oscillator,
results in a time-varying, linear model describing the dynamics of the coupled system.
Three different control techniques are considered: passive, active, and semiactive. These
techniques will be applied and evaluated in terms of their ability to reduce the dynamic
response of the continuum and the oscillator. A tracking control algorithm, that uses
accelerations of both the continuum and the oscillator for feedback, is used to calculate the
optimal control action. The results indicate that the response of the system with semiactive
control approaches that of an active control, while using significantly less power. The
controllers both outperform a passive control system. 
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Chapter 1 

Introduction

The behavior of an elastic continuum excited by a moving oscillator is of great interest

for a variety of engineering applications [23, 35]. In the civil engineering field for

instance, the behavior of highway and railway bridges with a moving vehicle can clearly

be modeled using this approach. The interacting dynamics of the bridge and the vehicle

can increase the static response of the system dramatically, making this phenomenon

important to consider in bridge design [7]. Other applications can also be found in the

mechanical and aerospace fields.

Over the years, several mathematical models have been used to simulate the behavior of

this system. The first and most basic representation neglects all dynamics and coupling

between the oscillator and the continuum, reducing the response of the latter to a simple

static deflection due to the mass of the oscillator. Using this approach, the deflection of

the continuum is described by a polynomial whose coefficients change depending on the

position of the load. 

w(x,t)
v

m g

FIGURE 1-1.  Moving force model.
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More recently, the vehicle has been modeled as a moving force (see Fig. 1-1), producing

a dynamic response of the continuum but neglecting both the inertia of the vehicle and

the dynamics of its suspension. This model was clearly a step forward from calculating

only the static deflections for different positions of the load, but was misrepresenting the

dynamic interaction of the two subsystems. To improve upon this model, researchers

proposed a moving mass rather than a simple moving force (see Fig. 1-2). This approach

takes into account the changing mass distribution of the system but does not necessarily

represent its real behavior as the dynamic coupling of the oscillator and the continuum is

still neglected. 

It was only in the late 1990s, that the development of new methods for analyzing the

moving oscillator problem has overcome this limitation (see Fig. 1-3). Pesterev and

Bergman [23] showed that this coupled system could be described by a time-varying

system of linear equations. That is, the coefficient matrices vary as the oscillator moves

along the length of the continuum. In the limiting case, this model has been shown to

approach the solution to the moving mass problem [31, 32]. Results have indeed shown

that the dynamic response of the coupled system may be significantly larger than the

static response alone.

In these methods the response of the continuum is expressed as a Taylor series expan-

sion. The convergence of this approach is satisfactory when trying to approximate con-

tinuous functions such as the displacement of the continuum. However, because the

FIGURE 1-2.  Moving mass model.

w(x,t)
m

v
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oscillator is a point load, the distribution of shear forces is a non-continuous function,

whereas the distribution of bending moments does not have a continuous derivative.

Therefore, a series expansion alone is inadequate to represent the stress distribution

along the continuum.

The moving oscillator model may be employed to study a variety of real-world systems.

Cable transportation materials [35], high-speed precision machining [3, 17, 18], and

magnetic hard drives [14, 15], are some of those applications. In civil engineering, it

may represent a vehicle crossing a bridge, capturing the effects of their interaction. In

this case, the characteristics of the load are determined by the mass of the vehicle, its

suspension, and its velocity. Under certain common conditions, this interaction can

cause significant dynamic responses producing an important source of damage and

fatigue. With 900-billion ton-miles of commercial traffic traversing highways and high-

way bridges each year, this may have a significant effect on the lifetime of a bridge. Fif-

teen percent of bridges in the U.S. are classified as structurally deficient by the Federal

Highway Administration (Bureau [2]; see also: www.fhwa.dot.gov). Controlling the

effects of this vehicle-bridge interaction has the potential to significantly increase the

service life of bridges. 

FIGURE 1-3.  Moving-oscillator model.

w(x,t)

m v

z(t)

ck
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Although this study may be applied to several types of distributed parameter systems

such as non-continuous strings, the focus of this thesis is to apply control techniques to

the specific case of a vehicle crossing a bridge. For this reason, a continuous beam is

selected as the continuum. Moreover, because the shear deformation does not greatly

affect the dynamic response of a beam, an Euler-Bernoulli beam model is employed.

1.1  Control Strategies

This thesis considers the use of several techniques for controlling the dynamic response

of the system as the oscillator traverses the continuum. However, the total response of

the system has both static and dynamic components. The goal herein is to apply a con-

trol action that forces the system to behave as if only static forces were being applied,

minimizing the vibration produced mainly by the interaction between the two indepen-

dent subsystems. 

The control force is in all cases applied with a device placed in parallel with the spring

and dashpot comprising the suspension of the moving oscillator. The fact that the actua-

tor moves along the continuum makes the problem more challenging because the con-

trollability of the variables is time dependent [12]. For instance, no control action can be

applied to the continuum while the oscillator (carrying the control device) has not

entered the beam, or has left it already. This controllability reaches its maximum value

when the oscillator is at the midspan. 

The first technique considered is active control. For over two decades, research and

applications of this type of control systems to civil structures has been growing rapidly

[29]. Active control systems operate by using external energy supplied by actuators to

impart forces to the structure [5]. The appropriate control action is determined based on

measurements of the structural responses. Because energy is input to the structure, an
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active actuator combined with a faulty algorithm can potentially drive the system unsta-

ble, constituting one of the main limitations of this type of control.

Because of its capabilities, when applied to the vehicle-bridge model, a well designed

active control system is expected to perform efficiently. The actuator for this case is

considered to be ideal, and can instantaneously and precisely supply any control force.

The optimal force at any time is calculated by an H2/LQG control algorithm based on

acceleration feedback [5, 9, 10]. These accelerations are measured with sensors located

at certain points of the beam and the oscillator.

Two semiactive control designs are considered in this study. Unlike actuators used in

active control, a semiactive device is unable to input energy to the structural system [6,

16]. The idea is to modulate the dissipation of energy with a damper whose properties

can be changed in time so that optimal performance is achieved. A semiactive actuator is

capable of producing tension and compression control forces, but can only do so when

the velocity of its stroke is opposing the force (i.e. dissipative). 

Several investigators have studied the suitability of this class of devices and have found

them to be effective in reducing the response of structures to different dynamic loads [6,

11]. One of the most important advantages of semiactive control is that it requires much

less power than active control. The reason for this difference lies in the fact the semi-

active devices only react to the motion of the structure, dissipating energy in a controlled

way. Moreover, because of its incapacity to introduce non-dissipative forces to the sys-

tem, semiactive control systems are intrinsically stable (in the bounded input - bounded

output sense). 

Even though the power required by active and semiactive systems is very different, the

performance of semiactive systems can, in many cases, approach that of the active con-

trol and, sometimes, even surpass it [8, 34]. However, these devices behave nonlinearly,
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providing an additional challenge in the control design. A clipped optimal control algo-

rithm is used to determine the control action. 

Hydraulic dampers with variable orifice

and magnetorheological (MR) dampers are

the semiactive devices considered in this

thesis. Dampers with a variable orifice were

some of the first devices developed for

semiactive control. This class of dampers

dissipate energy as oil is forced through a

controllable valve, and thus controllable

forces are generated (see Fig 1-4). Karnopp

[16] described several possible configura-

tions for the hydraulics of these dampers

and some of their advantages and disadvan-

tages. Because of the rapid dynamics of

these devices compared to that of the vehi-

cle-bridge system, it can be assumed that the damper can reach any desired damping

coefficient very quickly.

Variable

Load

FIGURE 1-4.  Schematic of a 
variable-orifice damper.

Fluid

orifice valve
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Magnetorheological dampers (see Fig 1-

5) have also been proven to be effective

in civil structures [8, 11, 34]. These

devices also require minimum power

while generating large forces. MR-damp-

ers take advantage of the controllable

properties of MR fluids. When exposed to

a magnetic field, MR fluids can revers-

ibly change from a free-flowing, linear

viscous fluid, to a semisolid with a con-

trollable yield strength in milliseconds

[5]. 

One of the limitations of these control techniques is the amount of information that is

required to identify the optimal control action. Some of this information can easily be

obtained from the properties of the continuum and the oscillator, and do not change with

time. However, some other required data need more attention. For instance, it is assumed

here that the position of the oscillator as it crosses the continuum is precisely known at

any time, as well as accelerations of the oscillator and certain points of the beam. 

The data acquisition and computational effort are important factors that increase the cost

of these kind of applications. To justify this moderate increase, it is important to verify

the advantages of the performance of those techniques compared to that of the passive

control systems that need neither the data nor the calculations of optimal control action.

Therefore, two passive control techniques are applied and discussed. First, a viscous

damper is applied. A viscous damper could be referred as the passive stage of the

hydraulic damper of variable orifice, if no modification is done to its properties. More-

over, the performance of the system with an MR-damper in a passive mode is also ana-

lyzed and compared to all active and semiactive control performances. 

Controllable 

Load

magnetic field

MR-fluid

Accumulator

FIGURE 1-5.  Schematic of an 
MR-damper.
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1.2  Case Studies

Several cases of initial conditions and disturbance are considered as they may represent

real conditions in this type of system. By applying several sets of conditions and com-

paring the performance of all control techniques, the robustness of each technique is

tested. At first it is assumed that the beam has a perfect surface and is at rest when the

oscillator enters from the left side, traveling at a constant speed with no vertical motion.

Then a set of initial conditions is imposed on the system, simulating a previous excita-

tion of the beam by another oscillator. In a third case, an imperfection in the surface of

the bridge is considered. This imperfection (bump) introduces a disturbance that affects

both subsystems at that particular point as the oscillator enters. In this case, both the ini-

tial conditions and non-perfect surface of the beam are considered simultaneously.

1.3  Configuration

In the case of a vehicle and bridge, Fig. 1-6 shows two possible configurations for apply-

ing such a control system. Both configurations use wireless technology for sending and

receiving data in real time. Several authors have been researching applications in this

field [20]. Bluetooth wireless networking, wireless hubs, and even global positioning are

some of the options. While these methods are all still under development, wireless sen-

sors are already available and cost is the main factor in choosing among them.

The configuration shown in Fig. 1-6b may be expected to be more reliable from the net-

working point of view. This configuration does not require a transmitter on each sensor

placed on the bridge, lowering not only the risk of a cut in the transmission but also in

the cost of installation. 



9

1.4  Overview

In this thesis several control techniques are considered to reduce the dynamic response

of the moving-oscillator problem. A numerical example is created and simulated on the

computer, allowing for a direct comparison of all control designs. Several cases of initial

conditions and disturbance are considered to compare the robustness and capabilities of

those techniques. The methodology and purpose of each chapter is explained in the fol-

lowing paragraphs. 

Chapter 2 is devoted to the description of the mathematical model used to describe the

dynamics of the system. At first, the homogeneous solution of the continuum by itself is

FIGURE 1-6. Possible configurations.

m v

Wireless sensors

Suspension
        +
  Actuator

Computer
Data receptor

a) Wireless sensors on the bridge

m
v

Sensors

Suspension
        +
  Actuator

 Computer

Data receptor 
         +

Wireless sensor

       +
Transmitter

b) Wireless sensor on the vehicle

 Transmitter
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found, obtaining its natural frequencies and mode shapes. Then, the time response is

expressed as a series expansion of those mode shapes and a set of time-dependent coef-

ficients. The resulting time-dependent second order differential equations are re-

arranged in a single state space model. 

Chapter 3 provides a background on the type of control devices used in this work.

Although the dynamics and limitations of the active device are neglected (for compari-

son purposes), these parameters are accounted for and explained for both of the semi-

active actuators. The algorithms used to calculate the optimal control action applied by

each device are discussed in this chapter. Each of these algorithms is based on optimal

control theory using a linear quadratic cost function and acceleration feedback. More-

over, because the main objective is to simulate the static behavior of the system, all con-

trol algorithms must know in advance this response in order to track its path. This

“tracking signal” is also calculated in this chapter. 

To verify the efficacy of the tracking control algorithms developed in Chapter 3, a sim-

plified model is created in Chapter 4. A much simpler model facilitates testing several

possible alternatives for tracking control design. Both the variable controllability of the

response, and the time dependability of the system were neglected. For this reason, an

excellent performance of the tracking control algorithm was pursued to proceed and

apply the design to the much more complex moving-oscillator problem. Both the model

and the results of controlled and uncontrolled cases are discussed here.

Chapter 5 provides a numerical example of the moving oscillator problem. The charac-

teristics of the beam and the oscillator for this example were selected specifically to sim-

ulate the behavior of a simply supported bridge traversed by a vehicle. This chapter

describes three different cases of initial conditions and disturbance under which the sys-

tem is tested. The evaluation parameters needed to properly compare the behavior of all
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control techniques are defined and mathematically described. The results of all control

techniques are provided and discussed. 

Chapter 6 is reserved for conclusions of the research and provides some possibilities for

future studies. 
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Chapter 2 

Mathematical Approach

The success of a controller depends strongly on the adequacy of the model used to repre-

sent the actual phenomenon. A mathematical model that does not represent the physical

behavior of the system well, may lead to an ineffective control strategy and possibly

instability. The model used in this thesis was developed by Pesterev and Bergman in

1997 [23], and expresses the response of the continuum as a Taylor series expansion of

its eigensolution. The advantage of this model is that in addition to accounting for the

dynamics of the two subsystems, the model also includes coupling between them. Addi-

tionally, it is a low order model, which is highly appropriate for control design. 

In this chapter the differential equations that govern the coupled system are derived and

expressed in state space form. The most important reason to use this notation is the

advantages that it offers from the control design point of view. This issue will become

clear in Chapter 3 which discusses the background of control systems design and pro-

poses a controller for the moving oscillator problem. 

To simplify the equations used to describe the dynamics of the continuum and the oscil-

lator in the first sections of this chapter, the terms that involve their damping characteris-

tics are neglected. These terms however, are displayed in the state space model

developed in the ending sections of the chapter, and are also accounted for in the numer-

ical simulations described in later chapters. 
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One challenge in the control system design introduced in the moving oscillator problem

is the fact that the properties of the combined system, such as natural frequencies and

mode shapes, vary as the oscillator traverses the continuum. When represented in a state

space model, this means that the coefficient matrices are time dependent. The differen-

tial equations describing this phenomenon are developed herein. 

2.1  Equation of Dynamic Equilibrium 

Figure 2-1 shows a straight, simply supported beam with flexural rigidity  and mass

 per length that are functions of . The beam is subjected to a time dependent distrib-

uted load  perpendicular to its axis.

The increment on the shear force for each portion of the beam is given by the expression

, (2-1)

EI

ρ x

P x t,( )

FIGURE 2-1.  Internal equilibrium of an elastic continuum 
with a distributed load. 
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where  is the vertical deflection of the continuum for any given point and time. It

is well known that the shear force and bending moment for every portion of the beam are

defined as

 and . (2-2)

Substituting the expressions given in Eq. (2-2) into Eq. (2-1), the following dynamic

equilibrium equation is obtained

. (2-3)

Assuming a uniformly distributed mass and an unvarying stiffness along the continuum,

Eq. (2-3) may be simplified to

. (2-4)

2.2  Homogeneous Solution

From the homogeneous solution of the equation of equilibrium (2-4) we can obtain the

characteristics of the beam itself, specifically, natural frequencies and mode shapes. A

brief overview of the this solution is provided as follows [4]. The input force is set to

zero

. (2-5)
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It is assumed that the response of the continuum is given by the product of two different

expressions, one of them being a function of time only, and the other a function of the

position along the beam. That is

. (2-6)

This method is called separation of variables and is widely used in solving partial differ-

ential equations such as Eq. (2-5). Introducing this new expression into Eq. (2-5) 

, (2-7)

where the dot ( ) represents a derivative with respect to time and the prime ( ) means

the derivative with respect to . Equation (2-7) can be reorganized as 

. (2-8)

Note that the left side of Eq. (2-8) depends on time only, while the right side depends on

the variable . It is known that when two expressions that depend on two different vari-

ables are equal to each other, they must be equal to a constant. That is

, (2-9)

and therefore, two ordinary differential equations of second order can be obtained

(2-10)

w x t,( ) φ x( ) q t( )=
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. (2-11)

Solving Eq. (2-10) gives us the natural frequencies and mode shapes of the continuum.

However, these characteristics depend on the selected boundary conditions. As men-

tioned before, this thesis focuses on the case of a simply supported beam. Knowing then

that the displacements and bending moments at both ends are equal to zero, the follow-

ing natural frequencies and mode shapes are obtained [4]

 for (2-12)

 for (2-13)

Eq. (2-13) gives us the sinusoidal mode shapes as shown in Fig. 2-2. 
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Because the solution to the equation of equilibrium is not unique and can be expressed

with several independent terms, it is true that a better approximation to the total response

is given by a linear combination of those modal functions. That means

. (2-14)

2.3  Moving Oscillator Problem

Figure 2-3 shows the specific case in which the distributed load is replaced by a moving

oscillator that traverses the beam at a constant velocity.

The characteristics of the oscillator are given by  which represents the mass,  the

stiffness of its suspension,  the damping coefficient,  its velocity, and  the verti-

cal displacement from its equilibrium position. The characteristics of the continuum are

, which represents its mass per unit length,  its flexural rigidity,  its total length,
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FIGURE 2-3.  Linear oscillator traversing an 
elastic continuum. 
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and  the displacement of every point at any time. The force applied by the control

device is expressed as . For this particular case, Eq. (2-4) becomes

, (2-15)

where  is the heavyside function,  is the dirac delta,  is the coordinate along

the continuum, and  is the force applied by the suspension of the oscillator. If we

restrict our attention to the specific time when the oscillator is traversing the continuum

(i.e. ), then Eq. (2-15) can be written as 

(2-16)

Considering the moving oscillator alone, the equation governing its motion is 

. (2-17)

At each time, the force applied to the sprung mass and the beam is given by 

(2-18)

If Eq. (2-16) is multiplied by  and integrated over time, the orthogonality proper-

ties of the modes can be used to simplify this expression and reduce its dependency to

time only. The resulting equation involves the generalized coordinates of the continuum

[23] 
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 for (2-19)

 is selected so that the coefficient of the right side of Eq. (2-19) is equal to the unit

, (2-20)

and Eq. (2-19) can be rewritten as

 for (2-21)

Using Eq. (2-14) in Eq. (2-18), the following expression for the force is obtained

(2-22)

Eq. (2-22) can be used in Eqs. (2-17) and (2-21), obtaining the following system of cou-

pled expressions

(2-23)

for (2-24)
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Eqs. (2-23) and (2-24) can be solved to determine the response of the coupled system.

Note that the coefficients of these equations are time-varying, and the equations are lin-

ear. 

2.4  State Space Model

Defining the state vector , and taking into

account the damping characteristics of the two subsystems, we can rewrite Eqs.(2-23)

and (2-24) in state space form as 

(2-25)

where 

, (2-26)

. (2-27)
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, (2-28)

where  represents the damping coefficient of the oscillator, and  the damping ratio

of the  mode of the continuum. The output equation is selected to include the states,

as well as their first and second derivatives

(2-29)

where .

2.5  Summary

The mathematical approach used to model the behavior of the continuum and the oscil-

lator and their dynamic interaction has been developed in this chapter. First the equilib-

rium equations were derived. Then the homogeneous solution of the continuum alone

was found, obtaining natural frequencies and mode shapes. A series expansion of those

eigensolutions, was used to represent the displacement of the beam as the oscillator

traverses the continuum. The coupled equations of motion were then set and expressed

in state space notation.
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Chapter 3 

Control Background

The linearity of the system and the fact that the input force introduced by the oscillator

can be expressed as a sum of two terms (see Chapter 2, Eq. (2-16)) indicates that the

response of the entire system can be divided into two independent components. Pesterev

and Bergman derived the equations to solve these two components and called them the

moving-force and the elastic-force solutions of the moving oscillator problem [25].

However, when the oscillator travels at a low velocity, the moving-force solution

approaches the solution based on static deflections. In this study, only cases where this is

true are considered, and the moving-force solution will be referred to as the pseudostatic

response.

It is obvious that to reduce the pseudostatic response, it is necessary to change the prop-

erties of the beam itself, such as stiffness or boundary conditions. The dynamic compo-

nent, however, can be reduced with a number of mechanisms. For instance, tuned-mass

dampers or active mass drivers located at certain points of the beam are options to

achieve this objective. The method proposed in this thesis comprises a device attached

to the suspension of the oscillator and a control algorithm that determines the optimal

action to be taken. Depending on the type of actuator, this control action varies from a

commanded force for active control, a damping coefficient for a damper of variable ori-

fice, or a commanded voltage for an MR-damper. The device, in all cases, applies forces

of equal magnitude but opposite directions to the beam and the oscillator.
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It is important to note that the controllability of the system is time dependent. The reason

for this dependence is due to the fact that the control device moves along the continuum,

changing its capability to interact with it. For instance, the controllability of the first

mode of the beam reaches its maximum value when the oscillator is placed at the mid-

span, and decreases as the oscillator moves away from this point. Similarly, the control-

lability of the second mode has two maximum values at one quarter and three quarters of

the span, having a zero value in the midspan. Obviously, no control can be applied on

any mode of the continuum before the oscillator enters it, or after it has finished crossing

it. The controllability of the oscillator’s response also changes as it traverses the contin-

uum, although to a lesser degree. The controllability of this response reaches its mini-

mum value (not zero) at the midspan, and has a maximum value whenever the oscillator

is off the bridge. 

3.1  Device Models

An adequate understanding of the behavior of the control device is a very important ele-

ment when designing a control system. Its capacity to supply a commanded action and

the way it performs that action are two important factors to be accounted for. However,

the influence of these factors on the design, depend not only on the characteristics of the

actuator itself, but also on the dynamics of the system. 

Three devices are modeled and tested in this study: one for active control design and two

more for semiactive and passive control designs. The main assumptions, characteristics

and equations describing their capacity and dynamics are explained in the following sec-

tions. 

3.1.1  Active Actuator

It is always desirable for an actuator to have a quick dynamic response relative to that of

the system being controlled, and to be able to apply any force commanded, without
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restrictions of magnitude. When these two conditions are met, it is sometimes reason-

able to neglect both actuator dynamics and control-structure interaction. The actuator for

the active control design is assumed to be an ideal device. Thus, any force commanded

by the control algorithm is applied exactly as needed. Both compression and tension

forces are required by the system. In real applications, several devices such as hydraulic

actuators are capable of producing forces of the same magnitude required by this appli-

cation. However, their dynamics are not negligible and would have to be accounted for

when applied to the moving-oscillator problem. 

Assuming that the actuator is an ideal device allows us to investigate the best perfor-

mance that can be obtained with active control, and compare its results to those obtained

with other control designs. This facilitates a study which will determine the potential for

application of this technology. 

3.1.2  Variable Orifice Damper

Dampers with a variable orifice generate controlled responses as oil is forced through a

controllable valve [26]. Because of the rapid dynamics of these valves compared to that

of the vehicle-bridge system, it is assumed that this actuator has an ideal behavior. An

ideal semiactive device is a damper whose properties can be changed instantaneously to

any desired value. Figure 3-1 displays the mechanical model used for this device. 

The force generated by the device is 

, (3-1)

where  is the stroke and  is the damping coefficient that can be changed to any

desired value commanded by the control algorithm. 

f t( ) c t( ) y· t( )=

y t( ) c t( )
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To minimize the vibration generated by uneven roads, most commercial vehicles use

viscous dampers which can be modeled using Eq. (3-1) and a constant damping coeffi-

cient. For this reason, the behavior of a bridge, when traversed by a vehicle, is expected

to behave similar to the moving-oscillator model with this device.

Although theoretically the forces generated by this model are unlimited, it is also true

that there is a limited force capacity to each device. To account for this bound, the model

is limited to certain value of maximum force and will generate this value whenever the

theoretical model surpasses it. Thus the model is not linear for large velocity motions. 

3.1.3  Magnetorheological Damper

Magnetorheological (MR) fluids can reversibly change from a free-flowing fluid, to a

semisolid with a controllable yield strength, when exposed to a magnetic field. MR-

dampers take advantage of these properties to generate controllable forces. 

MR-dampers have an inherent nonlinear behavior that researchers have tried to identify

and simulate with different mathematical models. These models, however, are accurate

c t( )

y t( )

f t( )

FIGURE 3-1. Mechanical model of a damper with 
variable orifice

Controllable properties

Viscous damping
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for a limited set of devices, depending on their size and hysteretical behavior. One of the

simplest and more accurate models is the Bouc-Wen model of Fig. 3-2, which was

developed and shown to precisely predict the behavior of a prototype shear-mode MR-

damper over a wide range of inputs in a set of experiments [8, 33].

This model is also expected to be appropriate for modeling of a full-scale MR damper

[5, 6, 8]. It combines a viscous damping force with a nonlinear Bouc-Wen force. The

force applied by this MR-damper is given by the expression 

, (3-2)

where  is the stroke of the device and  is the evolutionary variable that accounts for

the history of the response of the damper.  is defined by the differential equation

. (3-3)

By adjusting the parameters of the model , , , and , one can control the linearity in

the unloading and the smoothness of the transition from the preyield to the postyield
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FIGURE 3-2. Mechanical model of MR-damper.
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region. The functional dependence of the device parameters on the effective voltage  is

modeled as 

(3-4)

. (3-5)

Although the current driver circuit of the MR-damper introduces dynamics into the sys-

tem, these dynamics are neglected. This means that it is assumed that the circuit pro-

vides any desired voltage to the MR-damper instantaneously. This assumption is

reasonable when the dynamics of the system are much slower than the velocity of reac-

tion of the circuit itself.

3.2  Control Design and Algorithms

As mentioned before, the main goal of this study is to minimize the dynamic response of

the continuum as the oscillator traverses it. This means that no control action is taken to

reduce the pseudostatic deflection of the beam generated by the mass of the vehicle.

However, the states of the state space model developed in Chapter 2 do not make a dis-

tinction between the components of the total response due to static and dynamic loads.

Therefore, if a control algorithm performs any action to reduce these states, this action

will not only try to reduce the dynamic component of the response but also the static

component. 

Most control techniques applied in the civil engineering field focus on reducing the total

response of the structure. Usually, to achieve this goal, a linear quadratic regulator that,

by definition, drives the states to zero is used. However, because the control design

applied in this study focuses on reducing the dynamic component only, a slightly differ-

ent approach is used in this thesis. To apply this method, it is necessary to know what the

u

α u( ) αa αbu+=

Co u( ) coa cobu+=
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behavior of the system is when no dynamic interaction is present between the oscillator

and the continuum. Then a control action is taken in order to approximate the response

of the coupled system to that of the static behavior. 

Thus, rather than a regulator, the problem of controlling the continuum-oscillator

dynamic interaction then becomes a tracking problem in which the states are forced to

follow the behavior of the pseudostatic response. Therefore, both the states related to

displacements and the ones related to velocities are required in advance. 

With the exception of the viscous damper, all devices described in Section 3.1 are com-

manded by algorithms that find the optimal control action to be taken by a particular

device. Therefore, each of these algorithms has to account for the characteristics of the

device in order to achieve the best possible response of the system. All algorithms and

strategies used in this study are described in this chapter. 

3.2.1  Passive Strategy

A passive control strategy does not need a control algorithm. It is obtained by placing a

device that reacts to the motion of the system with certain properties that cannot be

changed in time. Therefore, no data acquisition system or processing effort is needed. A

passive strategy is used with two different devices in this study: viscous damper (set to a

constant damping coefficient) and magnetorheological damper (with a constant voltage). 

3.2.2  Tracking Signal

Green’s formula is used to determine the static response of the continuum for any posi-

tion of the oscillator. For a simply supported beam, this formula takes the form 

, (3-6)G x ζ,( ) mg
6EI
--------- x ζ–( )3

H x ζ–( ) x
3

L ζ–( )
L

----------------------–
x L ζ–( )3
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where  represents the position of the oscillator,  the coordinate along the length of the

continuum,  the mass of the oscillator, and  the gravitational force. Assuming the

oscillator enters the beam at  with a constant velocity, Eq. (3-6) becomes 

, (3-7)

where  is the velocity of the oscillator. Eq. (3-7) is referred to as Green’s pseudo-static

formula because, even though it provides static deflections due to the mass of the oscil-

lator, it is a time dependent function. In the hypothetical case in which the oscillator

traverses the continuum at a constant velocity producing no other response than simply

static deflections given by Green’s formula, the velocity of each portion of the beam is

given by its derivative with respect to time. This expression is

. (3-8)

The output of Eqs. (3-7) and (3-8), however, are vertical deflections and velocities of the

continuum respectively, whereas the states of the model developed in Chapter 2 do not

represent these physical values. Instead, the states of the model represent the coefficients

of the eigensolutions of the system. In theory, an infinite combination of those modes

with the appropriate coefficients will approach exactly the solutions given by Green’s

formula and its derivative with respect to time. A limited number of modes is used to

approximate the total response in this study.
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Discrete values of Eq. (3-7), and the eigenmodes (given by Eq. (2-13)) are used to solve

this problem numerically. The length of the beam is then divided into a number of sec-

tions , whereas  periods of time are used. Thus, setting Eq. (2-14) equal to the discrete

values of Green’s formula, and expressing it in matrix form, the following expression is

obtained

, (3-9)

or, 

(3-10)

where  represents the vector containing the coefficients of

the  mode at  times, and  is the -dependent vector of

the  eigenmode for all  sections of the beam. Because the discrete values of the

eigenmodes ( ) and the pseudo-static formula ( ) are both known matrices that can be

easily calculated based on the properties of the continuum, the problem is then reduced

to that of finding the time-dependent coefficients  ( ), from an overdetermined set of
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linear equations. The least squares approximation is used to solved this problem by

using a pseudo-inverse. Eq. (3-10) takes then the form

, (3-11)

where  represents the pseudo-inverse of this non-square matrix. This approach is also

applied to obtain the first derivative of the states ( ) using the expression given in

Eq. (3-8). The oscillator is assumed to have the same displacement and velocity of the

continuum at the point is placed at any time, so that the relative distance between the

two subsystems is constant. 

Finally, for any time, the states to be tracked can then be grouped together in a vector as

follows

. (3-12)

3.2.3  LQ Tracking Algorithm

The model developed in Chapter 2 is described by Eqs. (2-25) and (2-29), which can be

rewritten as 

(3-13)

, (3-14)

where the matrix coefficients are all time dependent. Defining an error vector  equal

to the difference between the states of the system and the reference states as

Γ G θ+=

θ+

q·n t( )

xr z q1 q2 … qN z· q1
·

q2
· … qN

· T
=

x· Ax Bu E mg( )+ +=

y Cx Du F mg( )+ +=

xe
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, (3-15)

and therefore

. (3-16)

. (3-17)

Substituting Eqs. (3-16) and (3-17) into (3-13) yields

, (3-18)

which can be reorganized and expressed as

. (3-19)

An infinite horizon quadratic performance index is selected. This index has the form

, (3-20)

where  and  are the weighting matrices of the error and the control forces respec-

tively. The goal is then to minimize the performance index so that the error is driven to

zero and the system has a behavior as close as possible to the static behavior. To achieve

this goal, the control law is of the form [1] 

, (3-21)

xe x xr–=

x xe xr+=

x· x· e x· r+=

x· e x· r+ A xe xr+( ) Bu E mg( )+ +=

x· e Axe Bu E mg( ) Axr x· r+( )+ + +=

J
lim

tf ∞→
   xe

TQ xe u
TR u+( ) td

0

tf

∫=

Q R

u t( )  
1

 2 
------ R 1– BT λ t( )–=
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and the co-state equation is

, (3-22)

where the final condition is known, , and 

(3-23)

Differentiating Eq. (3-23) with respect to time yields 

. (3-24)

Replacing  of Eq. (3-21) by the expression given in Eq. (3-23)

, (3-25)

and substituting this into Eq. (3-19) one can obtain

, (3-26)

where  is the disturbance (for this case ). Using Eqs. (3-22), (3-23), and (3-

24), the following expression can be obtained 

, (3-27)

substituting  by the expression given in Eq. (3-26) 

λ· t( ) ATλ t( )– 2Qxe t( )–=

λ tf( ) 0=

λ t( ) P t( )xe t( )=

λ· t( ) P
·

t( )xe t( ) P t( )x·e t( )+=

λ t( )

u t( ) 1
2
---R 1– BTP t( )xe t( )–=

x· e Axe
1
2
---BR 1– BTP t( )xe t( )– Ed Axr x· r+( )+ +=

d d mg=

P
·

t( )xe t( ) P t( )x·e t( )+ ATP t( )xe t( )– 2Qxe t( )–=

x· e t( )
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(3-28)

which can be reorganized as

. (3-29)

Because an infinite horizon performance index is selected, , and  becomes

zero. If  is then selected so that the coefficient of  in Eq. (3-29) is equal to zero, the

error  is driven to zero, and the states of the system will follow the desired command.

The control law is then given by Eq. (3-25), where  is the solution of the algebraic Ric-

cati equation [1] 

. (3-30)

In real-world applications there are unknown disturbances to the system that are not

included here. Calculations to determine  were done using the MATLAB (2001) rou-

tine lqry.m within the control toolbox. Note that the control gains are time-varying and

must be determined at each oscillator position.

3.2.4  LQ Tracking Algorithm with State Estimator

Because most of the states of this problem represent generalized coordinates, rather than

physical variables, they cannot be measured directly for feedback in a control system.

However, to determine the control action, the algorithms used in active and semiactive

control require an estimate of the states at any time. To obtain this, an observer that uses

measured accelerations from certain points of the beam and the oscillator is used. 

P
·
xe PAxe

1
2
---PBR 1– BTPxe– PE mg( ) P Axr x· r+( ) ATPxe 2Qxe+ + + + + 0=

P
·

PA ATP 1
2
---PBR 1– BTP– 2Q+ + + 

  xe PE mg( ) P Axr x· r+( )+ + 0=

tf ∞→ P
·

P xe

xe

P

PA ATP 1
2
---PBR 1– BTP– 2Q+ + 0=

P
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Because accelerations are required for feedback, Eq. (2-29) can be reduced so that only

the states associated with accelerations become the output of the system. 

. (3-31)

Renaming the coefficients of the output equation as 

, , and . (3-32)

so that Eq. (3-31) can be expressed as 

(3-33)

For this problem, the observer takes the form 

. (3-34)

Where  is the state vector of the observer. Note the presence of a constant input due

to the known mass of the oscillator. Defining 

 (3-35)

Using Eqs. (3-31) and (3-35) in Eq. (3-34) yields 

(3-36)

The error between the real and the estimated states is . Thus, 

yfb G J x H2
u t( ) H1

mg( )+ +=

Cfb G J= Dfb H2
= Ffb H1

=

yfb Cfb t( )x Dfb t( )u t( ) Ffb t( ) mg( )+ +=

x·es Ao t( )xes Bo t( )u t( ) Eo t( ) mg( ) L t( )y'+ + +=

xes

y' yfb Dfbu–= Ffb mg( )–

x·es L Cfb x xesAo+ Bo u Eo mg( )+ +=

e x xes–=
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. (3-37)

Substituting the right hand of Eq. (3-37) by the expressions given in Eqs. (2-25) and (3-

36) the following error equation is obtained

. (3-38)

Defining ,  and , the error becomes

(3-39)

If  is selected appropriately, the observer will quickly estimate . In the active control

case

, (3-40)

and the observer takes the form 

(3-41)

and the output of the system becomes

(3-42)

Calculations to determine  were done using the MATLAB (2001) routine lqew.m

within the control toolbox.

e· x· x· es–=

e· A LCfb– Ao–( )x B Bo–( )u E Eo–( ) mg( ) Aoe+ + +=

Ao A LCfb–= Bo B= Eo E=

e· Aoe=

L x̃

u t( ) 1
2
---R 1– BTP t( ) xe t( ) xes t( )–( )–=

x·es A LCfb– BK– LDfbK+( )xes E LFfb–( ) mg( ) Lyfb+ +=

y Cx 1
 2 
------DR 1– BTP t( ) xe t( ) xes t( )–( ) F mg( )+ +=

L
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3.2.5  Clipped Optimal Control

Using a semiactive device is an attractive alternative to active control for many applica-

tions [5, 6, 33, 34]. In this approach for the moving-oscillator problem, the actuator of

the semiactive case will replace the regular damper attached to the suspension of the

oscillator. The goal of the semiactive control algorithm presented here is to simulate the

behavior of an active controller whenever the system and its dynamics allows it. The

same linear quadratic tracking algorithm used to calculate the force applied by an active

actuator is used herein to provide an optimal response of the semiactive device. 

To take full advantage of semiactive devices when applied to civil engineering struc-

tures, a clipped optimal control algorithm was developed by Dyke in 1996 [5]. Based on

acceleration feedback, this algorithm induces the semiactive device to approximate the

behavior of a fully active device whenever the motion of the structure allows it. 

Figure 3-3 shows the desired behavior of the semiactive control device for any values of

optimal force calculated by the LQG control algorithm and the relative velocity between

the oscillator and the continuum (stroke rate). Thus, the commanded force to the semi-

FIGURE 3-3. Graphical representation of force 
commanded to semiactive devices.

fLQG

rel velocity

Fully active 
behavior

Minimum

Fully active 
behavior

resistance

Minimum
resistance



38
active device is equal to that of the active case whenever the stroke rate is opposing the

required force. For instance, a certain value of optimal tension is commanded only when

the damper stroke is increasing, whereas compression is commanded when the stroke is

decreasing. 

On the other hand, whenever the stroke rate does not oppose the optimal force, the com-

manded force to the semiactive device is set to zero. As explained in past sections, the

damper of variable orifice is set to a minimum value of damping, whereas the voltage of

the MR-damper becomes zero. This does not necessarily mean that the actual force

applied by the device is zero. In fact, only in rare occasions does this become true.

3.2.5.1 Clipped optimal control algorithm and viscous variable damper

When combined with a viscous variable damper, a clipped optimal control algorithm

commands the optimal damping coefficient to the device. At any time, the force applied

by the device placed between the oscillator and the continuum is

, (3-43)

where  is the relative velocity between the oscillator and the point of the beam at which

the oscillator is placed (stroke rate), and  is the damping coefficient at any time. If

 is the force commanded by the clipped optimal control algorithm (see section

3.2.4), Eq. (3-43) can be solved for  obtaining the damping coefficient that provides

that force

(3-44)

f t( ) c t( ) v t( )=

v

c

fCOM

c

c t( )
fCOM

v t( )
------------=
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It is obviously not possible to provide any value of  required by the control algorithm.

For instance, a negative damping coefficient would mean that the damper is introducing

external energy to the system, and by definition, a semiactive device is not able to per-

form this action. On the other hand, these kind of variable dampers have limitations

regarding the maximum force they can apply. Thus, an upper limit is also introduced so

that the subsystem comprised by the mass of the oscillator, the spring and the damper

form a critically damped system.

3.2.5.2 Clipped optimal control algorithm and MR-damper

When a MR-damper is combined with the clipped optimal control algorithm, the com-

manded signal becomes a voltage rather than a force or a damping coefficient. It is

assumed that the force generated by the MR-damper can be measured precisely at any

time. Then, the commanded and provided forces are compared. 

Several researchers have used bang-bang algorithms to obtain optimal performance

from MR-dampers, providing only two possible values of voltage to the semiactive

device [11, 34]. By adopting this strategy, a maximum voltage is applied whenever the

dissipative force provided by the damper is less than the dissipative force commanded

by the LQ algorithm. When this is not the case, the voltage is turned to zero, allowing

the damper to flow almost freely. Figure 3-4 provides a schematic representation of this

type of algorithm. 

Given the rapid dynamics of the MR-damper compared to that of the continuum oscilla-

tor system, and after several numerical simulations testing the performance of the bang-

bang algorithm, it was found that a great amount of “chattering” may be introduced to

the circuit, decreasing dramatically the performance of the control action. This phenom-

enon occurs when the dissipative force required by the system is greater than the force

c
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provided by the MR-damper, turning the voltage to its maximum value immediately.

The force provided then, quickly reaches the desired force, but a great amount of over-

shoot is provoked. The algorithm then, stops providing the voltage, and therefore, the

force quickly drops to a lower value than the required value. This phenomenon takes no

longer than tenths or even hundreds of a second and occurs whenever the force required

is dissipative and can be provided by a semiactive device. 

To minimize this effect in the control algorithm, two different strategies are imple-

mented. First, rather than providing either a maximum voltage or no voltage at all, an

increasing or decreasing voltage is commanded to the magnetic field of the device.

Therefore, whenever the required force is greater than what is being provided, the volt-

age will gradually be increased without producing a large amount of overshoot in its

response. Obviously a maximum voltage is set before the simulation. Similarly a reduc-

tion of the voltage provided is necessary whenever the MR-damper is applying a force

of greater value than what it is required. Figure 3-5 schematically displays this proposed

solution. 

FIGURE 3-4. Bang-bang algorithm for voltage 
commanded to MR-damper.
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In addition to the gradual changes in voltage, a low tolerance between the measured and

the required forces is introduced to the control algorithm. This means that changes are

not introduced to the magnetic field until the required force is significantly different

from the one provided. An acceptable value for this tolerance is 5%, which means that

the voltage is not increased (or decreased) unless the required force is 1.05 times greater

(or smaller) than the force provided at any time. Figure 3-6 displays the difference

between the control force provided by algorithms with and without a tolerance value. 

FIGURE 3-5. Graphical representation of 
voltage commanded to MR-damper.
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3.3  Summary

The mathematical models used to describe the behavior of all devices simulated in this

study were defined in this chapter. Advantages, disadvantages and physical limits of

those actuators were also discussed here. 

The need of a tracking control algorithm that forces the system to have a behavior simi-

lar to the quasi-static behavior was explained. Then, based on Green’s formula and its

derivative, the theoretical quasi-static behavior was found for both the continuum and

the oscillator. Finally, all control strategies and algorithms were defined and discussed. 

FIGURE 3-6. Schematic difference in algorithms with 
and without a tolerance value.
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Chapter 4 

Control Algorithm Verification 

There are several factors that make the problem of controlling the dynamic response of

the moving-oscillator model challenging. As mentioned in previous chapters, the vari-

able controllability of the states, and the time dependence of the system are two of the

most important difficulties. For this reason, when a control algorithm is numerically

evaluated directly on the vehicle-bridge model, the achieved improvements cannot be

easily judged. To efficiently test the efficacy of the tracking control algorithm developed

in Chapter 3, a simplified model was created. Both the variable controllability of the

response, and the time dependency of the system were neglected. An excellent perfor-

mance of the controlled response was pursued, in order to proceed and apply it to the

much more complex moving-oscillator problem. 

4.1  The Simplified Model

Figure 4-1 shows the simplified model used for algorithm verification. The lower mass

represents the continuum and the upper mass the oscillator. It is obvious that the lower

mass cannot represent the full length of the continuum. For instance, if looked at inde-

pendently, the lower mass has only one natural frequency, whereas the continuum has an

unlimited number, each associated with a different mode shape. However, after numeri-

cal simulations of the uncontrolled vehicle-bridge model, it was clear that the response
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of the continuum was highly dominated by its first mode. For this reason, the lower mass

on the simplified model represents only this component of the total response. 

The characteristics of this simpler model were then selected to represent the vehicle-

bridge problem. Thus, masses, stiffnesses, and damping coefficients were calculated so

that the mass ratio and the natural frequencies of the independent subsystems could be

compared to those of the system in Chapter 5. , in Fig. 4-1, represents the applied

disturbance,  is the control force, and  and  the vertical displacement of the

lower and upper mass respectively.

The dynamic equilibrium equations of these two masses are 

(4-1)

(4-2)

FIGURE 4-1. Simplified model.

u(t)

m2

m1

y1 t( )

y2 t( )

k1

d t( )

k2 c2,

c1

d t( )

u t( ) y1 y2

m1y··1 c1 c2+( )y·1 c2y·2– k1 k2+( )y1 k2y2– d– u+ + + 0=

m2y··2 c2y·1– c2y·2 k2y1– k2y2 u+ + + 0=
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which, reorganized and expressed in state space form with the state vector

, can be expressed as 

, (4-3)

where 

, , and . (4-4)

The calculated numerical values are:  = 32000 Kg,  = 4800 Kg,  = 891800 m/

N,  = 135000 m/N,  = 3380 , and  = 10180 . 

4.1.1  Tracking Signal

Because the main objective is to control the dynamic response of the continuum (repre-

sented by the lower mass in the simplified model), the control algorithm must focus on

tracking the states of the pseudo-static response. In addition, because the total response

of the continuum is so highly dominated by its first mode, the maximum displacements

are present at the midspan. Therefore, the tracking signal contains the displacement and

velocity of the continuum’s midspan in the pseudo-static case. To calculate this signal,

one can substitute  in Eqs. (3-7) and (3-8) obtaining
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=
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 (4-5)

, (4-6)

where  is the velocity of the oscillator in the vehicle-bridge system of Chapter 5,  is

the length of the continuum,  and  are the characteristics of the continuum and the

oscillator, and  is the gravitational force (  = 4 ,  = 32 ,  = 4800 , and

 = 3e8 ).

4.1.2  The Disturbance

The disturbance is applied directly to the lower mass, producing motion in both the

upper and the lower mass because of their interaction. This force was chosen to produce

a response of the simplified model similar to the response generated by the oscillator as

it traverses the continuum. It is composed of two different forces, one a function of the

tracking signal, and the second a sinusoidal force. 

(4-7)

The first component applies, at every time, a force of such magnitude that would make

the lower mass ( ) have a static displacement equal to the one being tracked. This

does not mean that it will not produce any dynamic response on the system. The expres-

sion for this force is

. (4-8)

T t( ) mgv2
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------------- Lt2 2vt3–
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 –=

T
·
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3EI
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 –=

v L
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EI m4 s2⁄
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L
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For the second disturbance, a sinusoidal force of frequency equal to the natural fre-

quency of the upper mass is applied on the lower one. This force roughly simulates the

interacting dynamics present in the moving-oscillator problem. Eq. 4-9 describes this

component as 

, (4-9)

where . Figure 4-2 shows the components and resulting summation of the

disturbance. 

d2 t( ) A
k2

m2
------  t

 
 
 

sin=

A 10000=

FIGURE 4-2. Disturbance components and total.
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4.2  Results

Numerical simulations with an eight second duration are performed to analyze the

response of the uncontrolled system and to verify the control algorithms. In the simula-

tions both the upper and the lower mass start at rest (i.e. zero initial conditions). 

4.2.1  Uncontrolled Case

Figure 4-3 shows the uncontrolled response of the simplified model. Although the dis-

turbance is applied directly to the lower mass, it produces an amplified response of the

upper mass. There are two reasons for this phenomenon. First, the disturbance applied to

the system has a sinusoidal component whose frequency is equal to that of the upper

subsystem (0.84 Hz, if looked at as an independent subsystem), amplifying its response

greatly. However, even more importantly, is the fact that the natural frequencies of the
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FIGURE 4-3. Uncontrolled behavior.
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two masses (as independent subsystems) are very close to each other (approximately

0.84 Hz). Thus, the upper mass reacts to the motion of the lower one in the way a tuned

mass damper (TMD) would.

When the upper mass does not have any damping (i.e. ) its response is very

large, releasing much of the energy that is input by the disturbance, and decreasing the

response of the lower mass. For this reason, and unlike the numerical vehicle-bridge

model of Chapter 5, an increase on the damping properties of the upper mass (represen-

tative of the vehicle) increases the response of the lower mass. Thus  was then

selected such that neither mass hit resonance during the simulation (i.e. %). 

4.2.2  Active Control Case 

For verification purposes, it is assumed that the full state vector can be measured here to

obtain the optimal control action. Thus, no estimator is required. The weighting matrix

 for this simplified model is a square matrix whose size is equal to the number of

states (i.e. 4). All but one values are equal to zero. The only numerical value is equal to

 placed on the first position of its diagonal. This value is associated with the dis-

placement of the lower mass, meaning that only this displacement is weighted, and the

force applied controls only this variable.  is equal to 1.

(4-10)

The optimal force is then calculated following the mathematical procedure described in

Chapter 3. (section 3.2.3). Figure 4-4 shows the control force applied to the system as a

c2 0=

c2

ζ2 20=

Q

1e14

R

Q

1e14    0     0     0   

0 0 0 0

0 0 0 0

0 0 0 0

=
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function of time. Both the controlled and the uncontrolled responses of the lower mass

are shown in Fig. 4-5. In addition to those, the commanded displacement (tracking sig-

nal) is also shown. 

An evaluation parameter is defined to compare the behavior of the uncontrolled and the

controlled cases with respect to the desired displacement (tracking signal). This evalua-

FIGURE 4-4. Active control force.
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FIGURE 4-5. Response of the lower mass.
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tion parameter is a measure of the root mean square (RMS) of the difference between the

response of the lower mass and the desired displacement over the time frame of interest.

This is

, (4-11)

where  represents the final time of the simulation (8 sec),  is the ith displacement of

the lower mass, and  is the ith commanded displacement. The result of this evaluation

parameter for the uncontrolled case is 0.2829m while the controlled case is 0.0484m.

Thus, an improvement of 82.9% is achieved. 

The control algorithm, on its current configuration, does not weight the states associated

with the upper mass (displacement and velocity), and, on the contrary, uses this mass to

generate controlling forces. Therefore, because an aggressive active controller can

potentially drive the system unstable, it is important to check the behavior of the upper

mass and make sure its response has not been excessively increased. Figure 4-6 shows

this response. 
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FIGURE 4-6. Response of the upper mass.
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Although it is not a goal here, it is preferable to maintain constant the distance between

the two subsystems. In the vehicle-bridge model, this would mean that the system does

not produce any dynamic response as the oscillator traverses the continuum, having only

static displacements at every time. In the simplified model, it would mean that the sys-

tem is not affected by the second component of the disturbance, and no dynamic

response is generated by the first component. For this reason, the evaluation parameter,

, is also useful to quantify the performance of the upper mass with respect to the com-

manded displacement. After this evaluation, its performance was decreased by only

48%, a trade of somewhat expected after achieving such an excellent performance of the

lower mass. 

4.2.3  Semiactive Control Case 

For the simplified model, only the behavior of the system with a variable orifice damper

(described in Chapter 3, section 3.1.2) is analyzed, leaving the MR-damper to be tested

with the actual vehicle-bridge model. The optimal control action was determined using

the clipped optimal control algorithm described also in Chapter 3 (section 3.2.5). Figure

σ1

FIGURE 4-7. Semiactive control force.
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4-7 shows the forces generated by the device during the simulation, whereas Fig 4-8

shows the response of the lower mass. 

The RMS response error of the lower mass with respect to the commanded signal is

0.2829m when no control is applied, whereas a value of 0.1621m is obtained with the

semiactive control. Thus, an improvement of 42.7% was achieved. The performance of

the upper mass was reduced by 26% only. 

4.3  Summary

To verify the tracking control algorithms developed in Chapter 3, a simplified model

was considered in this chapter. In this model both the continuum and the oscillator are

represented by masses attached to springs, dampers and a single control device. The

commanded displacement of the lower mass (representative of the continuum) was

obtained from the pseudo-static response of the midspan of the continuum, calculated in

Chapter 2. 

FIGURE 4-8. Lower mass behavior.
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To better represent the actual vehicle-bridge model, a disturbance was determined and

include as an applied force on the lower mass of the model. This force is composed of

two components. One of the components is function of the tracking signal, and the other

is a sinusoidal force. 

Numerical simulations of 8 seconds were performed. Both controlled and uncontrolled

responses were found and compare in terms of their RMS values. After evaluating the

improvements achieved in the performance of the simplified model, one can conclude

that the tracking control algorithm was verified. Both active and semiactive control tech-

niques recorded excellent performances, minimizing the dynamic response of the lower

mass without compromising the stability of the system as a whole. 
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Chapter 5 

Numerical Example

To examine the efficacy of the control systems developed in Chapter 3 when applied to

the continuum-oscillator problem, a numerical model was created. Numerical simula-

tions with a vehicle-bridge model can confirm that these control techniques are effective

regardless of the difficulties brought up by the variable controllability of the states and

the variability of the system itself. Several cases were selected to test the robustness of

the control systems. The properties of both the continuum and the oscillator were chosen

to simulate the interaction between a bridge and a vehicle. 

5.1  Properties of the Model 

The simply supported Euler-Bernoulli beam model of Chapter 2 is employed in this

study. The mass per unit length is defined as  and is equal to 1,000 Kg/m. The total

length between supports is m, and m4/sec2. Three modes are

used in the eigenfunction expansion that expresses the response of the continuum in

terms of its eigenmodes. Damping ratios equal to 2, 4, and 6% are defined for the first,

second and third eigenvalues, respectively. The natural frequencies are equal to 0.84,

3.36, and 7.56 Hz. 

The oscillator has a mass equivalent to fifteen percent of the total mass of the beam

(4800 kg.), a stiffness of N/m, and a constant velocity of m/sec.

ρ

L 32= EI 3.0 10
8×=

k 1.35 10
5×= v 4=
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Its natural frequency, if considered as an independent subsystem, is equal to 0.84 Hz.

The damping coefficient of the oscillator is  , which corresponds to

a damping ratio of 1% in the uncoupled system. 

5.2  Properties and Limitations of the Control Devices

As emphasized in several previous sections of this thesis, the active actuator is assumed

to provide instantaneous and precise forces commanded by the LQG control algorithm.

Semiactive devices, however, have several limitations inherent to their nature as

described in the following sections. 

5.2.1  Viscous Damper of Variable Orifice

The force applied by this device is provided by modifying the damping coefficient of the

viscous damper placed between the continuum and the oscillator (see Eq. 3-1). For

instance, when applied in passive mode, this coefficient is set to a value of  =

25,455 , that corresponds to a damping ratio of 50% of the oscillator alone.

This damping ratio is changed within the range from 1% to 50% based on the force com-

manded by the clipped optimal control algorithm. Moreover, for all cases, a limit of

3,000N is enforced such that the damping coefficient of the device is changed accord-

ingly if the commanded force surpasses this value. 

5.2.2  MR-damper

The parameters of the MR damper were selected so that the device has a capacity of

approximately 1,600 N, as follows:  = 2.0e5 N/m,  = 6.0e4 N/(m V), = 600

,  = 100 ,  = 1,  = 12,  = 3.0e3 m-1, and  = 3.0e3 .

These parameters are based on the identified model of a shear-mode prototype MR

c 509= N sec m⁄⋅

c

N sec m⁄⋅

αa αb ⋅ c0a

N sec m⁄⋅ c0b N sec m⁄⋅ n A γ β m 1–
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damper tested at Washington University [33]. The device was scaled up to reach higher

forces required by the vehicle-bridge model. 

The voltage commanded to the magnetorheological damper has a range from 0 to 6

volts. Increments (or decrements) of 0.5 volts are applied to the commanded voltage so

that the force produced by the device tracks the optimal force calculated by the clipped

optimal control algorithm (see Fig. 3-5). However, these changes to the commanded

voltage are not applied unless the difference between the required force and the force

provided by the device, at any time, is greater than 5% of the latter (see Fig. 3-6). 

It is important to note that for those simulations where an MR-damper is tested, no other

dissipative device is involved. This means that  becomes zero for those cases, leaving

all dissipative forces to be generated by the MR-damper itself.

5.3  Case Studies

To test the efficacy and the robustness of the control techniques, the system is tested

under three different conditions of service. In the first set of conditions (denoted Case 1),

the beam is in absolute rest at the moment the oscillator enters it, whereas the oscillator

moves only horizontally at a constant velocity. Given the high stiffness of the contin-

uum, and the relatively light mass of the oscillator, minimal dynamic interaction could

be expected. However, because the natural frequencies of the continuum and the oscilla-

tor (if looked at independently) are so close, one can expect increasing interaction when

either object is moving. 

For the second set of conditions (denoted Case 2), the beam is already excited when the

undisturbed oscillator enters it. The initial condition is expressed in terms of the first

mode of the beam, and more specifically with the state associated with its displacement

(i.e. only  is different than zero). For this case , which means that the dis-

c

q1 q1 4–=
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placement at the midspan is equal to 0.14 m (downwards), and, at , starts moving

upwards to recover its original (rest) position. This initial condition could represent the

interaction between the beam and another oscillator right before the oscillator with the

control device enters the continuum. 

For the third set of conditions a bump is introduced to the problem. A bump may repre-

sent an imperfect surface of the continuum, which produces strong disturbance forces

into both subsystems. In this particular case, the oscillator hits a sinusoidal bump, as

shown in Fig. 5-1. The bump is located at 12.8 meters (40% of the span) from the left

support, has a length of 0.64 meters, and reaches 0.5cm from the surface. The location

allows the created disturbance to excite all three modes taken into account in the numer-

ical model. 

The equation describing the motion of the wheel as it crosses the bump is 

, (5-1)

t 0=

FIGURE 5-1. Sinusoidal bump.
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where  represents the length of the bump,  its height above the surface level, and 

the velocity of the oscillator. As the vehicle crosses the bump the disturbance force

applied to both subsystems is 

, (5-2)

where  represents the mass of the oscillator. Under the third set of conditions, and

similarly to the second set, some initial conditions are imposed to the system, while

combining the disturbance generated by the bump. Table 5-1 summarizes all three cases.

5.4  Evaluation Criteria 

To compare the performance achieved with all control techniques, five evaluation crite-

ria were chosen. Both displacements and accelerations of the two subsystems are then

quantified and numerically compared. 

As emphasized in Chapter 1, the main goal of this study is to minimize the dynamic

response of the continuum. Therefore, to properly compare the effectiveness of the dif-

ferent control techniques to reduce displacements of the continuum, the pseudostatic

response is calculated and removed from the actual response of the system. The pseudo-

static response is calculated using Green’s formula, discussed in Chapter 3 (Eq. 3-7). 

Although none of the control algorithms are set to apply any control action to reduce

accelerations, it is important to evaluate their behavior and ensure no large impulses are

TABLE 5-1. Summary of cases studied.

Case Initial conditions Bump
Case 1 Zero No
Case 2 Non-zero No
Case 3 Non-zero Yes

l h v

fdist t( ) m u··g t( )=

m
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generated by the control force. Moreover, because most of the control techniques

applied in this study use semiactive dampers that dissipate energy in a controlled way,

accelerations are expected to be reduced. Accelerations are analyzed at two different

points of the beam, ensuring all three modes are considered. 

Similarly, the response of the vehicle is also quantified to guarantee its displacements

are not largely increased by the control force. Given the fact that the vehicle is the only

body that the control devices can “hold on to” in order to apply a control force to the

continuum, its displacements are not expected to be reduced by the control action.

Because of the external energy that the active control can input to the system, the dis-

placements of the oscillator may become a critical factor for this technique. Pseudostatic

displacements are also subtracted from the oscillator’s response. 

To examine numerically the behavior of accelerations and displacements, a measure of

the root mean square (RMS) responses over the time frame of interest is computed. This

is defined as 

(5-3)

where  is the th evaluation parameter,  represents the final time of the simulation

(8 sec), and  is the parameter to be evaluated. For instance, when accelerations are to

be evaluated , where  is the acceleration at any time and the subindex 

represents the number of the accelerometer. If displacements are to be evaluated then

, where  is the displacement at the midspan as

a function of time, and  is the tracking signal (pseudostatic displacement) of

the midspan. 

σi  
1
tf
---  r t( )( )2

0

tf

∫ dt=

σ1 i tf

r

r t( ) ai t( )= a i

r t( ) w L 2⁄ t,( ) T L 2⁄ t,( )–= w L 2⁄ t,( )

T L 2⁄ t,( )
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Finally, the maximum absolute displacement of the continuum is evaluated for each of

the control techniques. Table 5-2 summarizes all evaluation criteria considered. 

5.5  Uncontrolled Behavior 

Before performing the controlled simulations, it is important to understand the dynamics

and behavior of the coupled system as the oscillator traverses the continuum. Because

the system is time-varying, the natural frequencies of the system change as the oscillator

changes its position and the distribution of the mass is different. Figure 5-2 shows the

variation of these frequencies. Note that at  and  the system is decoupled,

and, when the oscillator is at these points, the frequencies are those of each independent

system. Also, notice that, for the parameters selected, the natural frequency of the oscil-

lator is very close to the first mode of the continuum. 

While higher frequencies of the continuum vary only slightly with the position of the

oscillator, the first mode varies significantly. Its frequency changes 31.3% from the

decoupled value. The natural frequency corresponding to the oscillator varies 23.6% as

compared to the frequency of the oscillator alone. These important changes constitute

the reason to calculate different control gains at every time step. Most civil engineering

structures with an active or semiactive control system are considered to be time invari-

ant, and therefore, only one calculation of gains is required. However, because the vehi-

TABLE 5-2. Summary of evaluation criteria.

Parameter Evaluation Criteria Position
RMS of accelerations 25 %

RMS of accelerations 50 %

RMS of relative displacements 50 %

Peak of absolute displacements 50 %

RMS of relative displacement Oscillator

σ1

σ2

σ3

σ4

σ5

x 0= x L=
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cle-bridge model have changes as high as 31% (depending on the continuum/oscillator

mass ratio), time-varying gains become a necessity to apply an accurate control action

and make sure the system is not driven unstable. 

After evaluating numerical simulations of the uncontrolled system using the mathemati-

cal model described in Chapter 2, it became clear that the response of the beam is

strongly dominated by its first mode. In fact, there is a ratio of approximately 17 to 1 of

the response of the first mode with respect to the second one. The ratio with respect to

the third mode is approximately 86 to 1. Based on this knowledge, the control algo-

rithms were designed by weighting only the generalized coordinate associated with the

first mode of the continuum, .

Figure 5-2 provides the response of the uncontrolled system (in terms of its states). Here,

the states  and  represent the displacement and velocity of the oscillator and are

given in  and  respectively, whereas the states  and  are associated with

the  mode of the continuum and, because they do not represent any physical response,

are dimensionless.

FIGURE 5-2. Variation of the system frequencies 
as oscillator traverses continuum. 
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5.6  Controlled Results

A total of five controlled simulations were performed for each case considered. The

response of the system with both of the semiactive devices was analyzed under two con-

ditions: i) commanded by their optimal algorithm, and ii) set to their passive mode (i.e.,

 for the damper of variable orifice, and  Volts for the case

of the MR- damper). Table 5-3 shows a summary of all simulations performed, the tech-

nique used, the control device and algorithm, and the information used for feedback. 
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The performance of each system is compared to the behavior of the uncontrolled system

in terms of the evaluation criteria described, stating the improvement with respect to this

case in percentage values. The reduction of each parameter is defined as

. (5-4)

For all control algorithms, a diagonal weighting matrix, , was used with a value

 associated with the first mode of the continuum. As mentioned before, this con-

troller considers time-varying control gains. Thus, it is assumed that the controller

knows the location of the oscillator at each time.

5.6.1  Case 1: Results 

Accelerations at two different points of the beam are provided in Fig. 5-4. Notice that

peak accelerations are reached during the first second, when the control device has little

influence over the system. This is especially true in both of the semiactive cases (vari-

able damper and MR-damper), which do not make any changes to the suspension of the

oscillator until the first second has passed. It is clear that the accelerations of the active

and semiactive controlled cases are damped out much faster than in the uncontrolled

case. However, the difference between the semiactive cases and their respective passive

modes (variable damper set at its maximum damping coefficient, and maximum voltage

TABLE 5-3. Summary of simulations performed

Technique Actuator Control Algorithm Feedback
Uncontrolled None None None
Active control Active LQG Acceleration

Semiactive control Variable damper Clipped optimal Acceleration
Passive control Variable damper None None

Semiactive control MR-damper Clipped optimal Acceleration
Passive control MR-damper None None

Reduction (%)
σi uncontrolled( ) σi controlled( )–

σi uncontrolled( )
----------------------------------------------------------------- 100×=

Q

1 10× 6
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of the MR-damper) cannot be easily visualized. For instance, when comparing the RMS

values (provided in Table 5-4), the performance of both of the semiactive cases outper-

formed the passive cases by only 8% at the midspan of the beam ( ). 

As emphasized before, no controllers are designed specifically to reduce accelerations.

Thus, the improvements achieved are due to the reduction of the overall dynamic

response of the system. 

σ2

FIGURE 5-4. Accelerations of the continuum. 
(Case 1)
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When the two subsystems are undisturbed at the moment the oscillator enters the beam,

the dynamic interaction between these two makes the beam reach a maximum displace-

ment at the midspan 5.5% greater than that calculated with a pseudostatic analysis. Fig-

ure 5-5 provides the time history of the deflections of the continuum at this point, once

the pseudostatic deflections were removed (referred to as the relative displacements).

The reduction of the RMS values of this evaluation parameter is 29.8% with the active

actuator commanded by the LQG control algorithm, and 24.6% and 22.5% with the vari-

able damper and the MR-damper respectively (when commanded by the clipped optimal

control algorithm). These improvements are much higher than those achieved with the

FIGURE 5-5. Mid-span relative displacement vs. time. 
(Case 1)
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semiactive devices in their passive mode: 10.1% and 13.4% with variable damper and

MR-damper, respectively (see , provided in Table 5-4). 

Figure 5-6 shows the relative displacement of the oscillator (with respect to the pseudo-

static reponse) for the uncontrolled and the actively controlled cases. As experienced

with the simplified problem discussed in Chapter 4, the displacement of the oscillator

was not expected to be reduced by the action of an active actuator. However, as seen in

Fig. 5-6, the response of the vehicle is increased only during the first two seconds of the

simulation. The reason for this phenomenon is the low controllability of the first mode

of the continuum when the oscillator is near any of the supports, which increases the

required control forces to minimize the continuum’s displacements. As a result, the

much lighter mass of the oscillator is negatively affected. Once those two critical sec-

onds have passed, the overall dynamic response of the system has already been reduced

greatly, and even the oscillator’s displacements are significantly decreased. 

Because no external energy can be input by the semiactive devices, the performance of

the oscillator was expected to surpass the performance achieved with the active control-

ler. The highest reduction of the vehicle’s displacement is achieved by the MR-damper
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commanded by the clipped optimal control algorithm, which, in terms of its RMS value,

is reduced by 38.8% (see , provided in Table 5-4).

Very similar reductions of the peak absolute displacement are achieved by all control

techniques. Table 5-4 provides the summary of all evaluation parameters and the

improvements achieved with respect to the uncontrolled case. 

5.6.2  Case 2: Results

Case 2 considers a bridge that is already excited when the vehicle traveling at a constant

velocity approaches. The most important reason to analyze the performance of the con-

trol techniques with this set of conditions is to test their efficacy under normal working

conditions that a vehicle-bridge system may be exposed to. As expected, a much larger

dynamic interaction between the two subsystems occurs when the beam is initially

excited by previous traffic (as implied in this case). 

TABLE 5-4. Evaluation criteria for Case 1.

Actuator Uncont. Acitve Variable damper MR-damper
Algorithm None LQG CO* None CO* None

0.0701 0.0475 0.0546 0.0552 0.0521 0.0552

Reduction (%) 32.3 22.1 21.2 25.7 21.3

0.0909 0.0589 0.0644 0.0698 0.0642 0.0697

Reduction (%) 35.2 29.2 23.2 29.4 23.3

0.0031 0.0022 0.0024 0.0028 0.0024 0.0027

Reduction (%) 29.8 24.6 10.1 22.5 13.4

0.1125 0.1086 0.1089 0.1085 0.1087 0.1080

Reduction (%) 3.5 3.2 3.5 3.3 3.9

0.0053 0.0043 0.0034 0.0037 0.0032 0.0045

Reduction (%) 18.6 35.2 29.9 38.8 15.0
* CO = Clipped Optimal
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Unlike active actuators, the capacity of semiactive devices is limited by the interaction

of the two subsystems. Thus, the larger the interaction between the continuum and the

oscillator, the larger the effect of the device can be. For this reason, the action of both of

the semiactive devices was expected to greatly minimize the overall dynamic response

of the system under the set of conditions imposed in Case 2. As seen in Fig. 5-7, and

similar to the first case (where no initial conditions were imposed), similar accelerations

are obtained with all control techniques during the first two seconds of the simulations.

FIGURE 5-7. Accelerations of the continuum. 
(Case 2)
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Clearly, both active and semiactive systems are very effective in reducing accelerations

of the model after this short period of time. However only marginal improvements with

respect to the passive modes are achieved. In fact, when comparing the RMS value of

accelerations, similar results are obtained for both semiactive and passive modes. 

As seen in Fig. 5-8 large reductions of the midspan displacement are achieved by both

active and semiactive devices, outperforming the uncontrolled and the passive cases.

Surprisingly however, a large reduction was achieved by the MR-damper when set to its
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FIGURE 5-8. Mid-span relative displacement vs. time. 
(Case 2)
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maximum voltage, being outperformed by its semiactive mode by only 11% (see ,

provided in Table 5-5). 

Figure 5-9 shows the displacements of the oscillator (after pseudostatic displacements

are subtracted) for the uncontrolled and actively controlled cases. Similar to the behav-

ior of this evaluation criteria in Case 1, its amplitude was increased only during the first

two seconds of the controlled simulation, after which it was greatly reduced. The maxi-

mum reductions of the RMS values of this displacements were achieved by the semi-

active devices when set to their passive modes. For instance, the improvement achieved

by the variable damper was 55.7%, with respect to the uncontrolled case, outperforming

the reduction of the semiactive mode, 39.4%. A similar situation occurred with the MR-

damper.

A remarkable reduction of the maximum absolute displacement of the continuum was

achieved by most control techniques. The highest reduction was the result of the active

control action, which decreased it by 12.5%, whereas both of the semiactive systems

achieved a reduction of about 10%. Table 5-5 provides a summary of all evaluation cri-

teria and their improvements with respect to the uncontrolled case. 

σ3

FIGURE 5-9. Oscillator relative displacement vs. time. 
(Case 2)
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5.6.3  Case 3: Results

Case 3 considers the introduction of a bump that represents an uneven surface of the

continuum, as well as an initially excited system. It is important to emphasize that in this

case, the state estimator ignores the characteristics of the bump, making the problem a

challenge in this sense. Figure 5-10 shows both the real and the estimated first four

states as the oscillator traverses the continuum. Note that after the oscillator hits the

bump (at ), the estimator requires approximately a second to reach, again, a

good estimation of the states. An inaccurate estimation of the states can, potentially, lead

to apply an inadequate control force increasing the dynamic response of the system. 

Usually, a control system is designed to perform best for a certain estimated level of dis-

turbance. For instance, to select the best possible design, a wide range of matrices 

was used for the first two sets of conditions (modifying its aggressiveness), knowing

that no external disturbance was being applied to the system other than the weight of the

TABLE 5-5. Evaluation criteria for Case 2.

Actuator Uncont. Acitve Variable damper MR-damper
Algorithm None LQG CO* None CO* None

0.2735 0.1728 0.2147 0.2078 0.1907 0.2018

Reduction (%) 36.8 21.5 24.0 30.3 26.2

0.3708 0.2384 0.2652 0.2803 0.2598 0.2711

Reduction (%) 35.7 28.5 24.4 29.9 26.9

0.0130 0.0088 0.0098 0.0114 0.0099 0.0109

Reduction (%) 31.9 24.2 11.8 23.6 15.7

0.1258 0.1101 0.1134 0.1165 0.1136 0.1150

Reduction (%) 12.5 9.8 7.3 9.7 8.6

0.0208 0.0148 0.0126 0.0092 0.0127 0.0107

Reduction (%) 28.9 39.4 55.7 39.3 48.5
* CO = Clipped Optimal

σ1

σ2

σ3

σ4

σ5

t 3.2 sec=

Q
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oscillator itself. However, what makes this third case more challenging is the fact that

the level of disturbance changes dramatically for a short period of time (0.16 sec), dur-

ing which the oscillator is in contact with the bump. 

One way to overcome this problem is to increase the aggressiveness of the control sys-

tem during the time the disturbance is introduced by the uneven road. After all, the

assumption of knowing the exact position of the oscillator was already made, and

assuming a known position of a bump is not out of reach. However, the lack of an accu-

rate estimation of the states shortly after the bump makes this solution unrealizable. In

fact, this would mean that an even larger and miscalculated control force could be intro-

duced to the system, most likely, increasing its dynamic response.

Using state feedback simulations (no estimator) combined with high authority control-

lers during a short period of time after the disturbance of the bump is introduced,

showed that the optimal response of the controller (to a bump of the characteristics used

FIGURE 5-10. Comparison of real vs. estimated states 
(Case 3)
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here) is always a large dissipative force that opposes the disturbance. This, in the active

control case, means that a much larger force is required for this period of time. In both of

the semiactive cases their maximum capacity was reached (   for

the variable damper, and  for the MR-damper). For this reason the original

clipped optimal algorithm was modified to produce these values for a short period of

time (three times the time required for the oscillator to cross the bump). By modifying

the control algorithm, inappropriate control forces, resulting form the poor estimation of

the states, are not allowed to be introduced to the system, giving the estimator some time

to “recover” from the bump. 

Figure 5-11 shows the forces applied by the control devices commanded by their opti-

mal algorithms with the modification explained before. Notice how the variable damper

reaches its maximum capacity (3000 N) shortly after the bump has been hit by the oscil-

lator. Because no changes were made to the algorithm that commands the active actua-

tor, the difference on the forces applied by this actuator and the semiactive devices can

easily be noticed at the time the oscillator hits the bump ( ). 

c 25455= N sec m⁄⋅

V 6 Volts=

t 3.2 sec=

FIGURE 5-11. Control forces applied. 
(Case 3)
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Figures 5-12 and 5-13 give us an idea of the magnitude of the disturbance produced by

the bump. For the uncontrolled cases, the existence of the bump increases the displace-

ment of the midspan by 29%. Both velocities and accelerations are also increased dra-

matically when this disturbance is introduced. As seen in Fig. 5-12, no major reductions

of accelerations were achieved by any of the semiactive devices commanded by their

modified clipped optimal algorithms, with respect to their passive modes. 

FIGURE 5-12. Acceleration of the continuum. 
(Case 3)
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If only the responses of the system after the bump were analyzed and compared, both of

the semiactive devices, commanded by their modified clipped optimal control algo-

rithms, would outperform the active controller. This can be easily seen in Fig. 5-13 (for

). However, because the action of the active controller minimizes the

response of the system in the “pre-bump” period so much quicker than the semiactive

devices, the overall performance is similar (see  for the active and semiactive cases

provided in Table 5-6). 

t 3.2 sec>

σ3

FIGURE 5-13. Mid-span relative displacement vs. time. 
(Case 3)
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Figure 5-14 shows the relative displacement of the oscillator for the uncontrolled and

actively controlled cases. Similar to Cases 1 and 2, this displacement was increased dra-

matically during the initial 25% percent of the span, Table 5-6 provides all evaluation

parameters for this set of conditions. 

TABLE 5-6. Evaluation criteria for Case 3.

Actuator Uncont. Acitve Variable damper MR-damper
Algorithm None LQG CO* None CO* None

0.4090 0.2409 0.2461 0.2407 0.2476 0.2406

Reduction (%) 41.1 39.8 41.2 39.5 41.2

0.5527 0.3092 0.2866 0.3115 0.3232 0.3134

Reduction (%) 44.1 48.1 43.6 41.5 43.3

0.0157 0.0098 0.0100 0.0121 0.0107 0.0118

Reduction (%) 37.6 36.2 22.8 31.6 24.4

0.1377 0.1225 0.1172 0.1222 0.1237 0.1238

Reduction (%) 11.0 14.9 11.3 10.2 10.1

0.0216 0.0156 0.0123 0.0109 0.0129 0.0123

Reduction (%) 27.6 43.0 49.3 40.0 42.7
* CO = Clipped Optimal

FIGURE 5-14. Oscillator relative displacement vs. time. 
(Case 3)
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5.7  Summary

To verify the efficacy and robustness of the control algorithms developed in Chapter 3,

several control scenarios were examined. The properties of both the continuum and the

oscillator were chosen to simulate the interaction between a full scale bridge and vehi-

cle. All properties and limitations of the devices used to apply controlling forces were

also modeled and discussed herein. 

Three different cases were defined. For the first case, an initially undisturbed system

was selected. In Case 2, nonzero initial conditions were imposed on the system. For the

final case, the already initially disturbed system was increased in complexity by adding

a bump, that represents an uneven surface. A small variation of the clipped optimal con-

trol algorithm was created to accommodate the problem of the partially unknown distur-

bance created by the bump. 

The uncontrolled response of the system and the variability of its natural frequencies as

the oscillator traverses the continuum were analyzed. Based on this analysis, it was

decided to design the control algorithms to focus on minimizing the first mode of the

beam. The importance of having a variable controller was demonstrated. 

Five evaluation criteria were defined to properly compare the performance of all control

techniques. Root mean square (RMS) values of accelerations at two points of the contin-

uum, the midspan displacement, and the oscillator’s displacement were among those

parameters. The displacement values, however, were calculated after the pseudostatic

response of the system was calculated and subtracted from the actual response.

Similar reductions in displacements of the continuum were achieved by both active and

semiactive techniques, outperforming uncontrolled and passively controlled systems.

Only marginal reductions of accelerations were obtained with semiactive control tech-
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niques as compared to those achieved with passive techniques. Both variable damper

and MR-damper were very effective in reducing the displacements of the oscillator. 
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Chapter 6 

Conclusions and Future Work

Active and semiactive control techniques were proposed in this thesis to minimize the

dynamic response of an elastic continuum when traversed by a moving oscillator. The

first step was to derive the mathematical model that describes the time varying dynamics

of the system. Then, a tracking control algorithm that uses a quadratic performance

index and acceleration feedback was developed. This algorithm was appropriately mod-

ified to take full advantage of each of the three control devices chosen to perform the

control action. A simplified model was used to successfully verify the efficacy of the

tracking algorithm developed. Then, a full scale vehicle bridge model was created and

used to perform both controlled and uncontrolled simulations. Comparisons of the per-

formance of the different control techniques to reduce the dynamic response of the sys-

tem were based on a set of evaluation criteria. Performances achieved with semiactive

techniques were similar to those achieved with active control, while requiring only a

fraction of the power used by an active actuator. Both active and semiactive systems

outperformed passive techniques. 

As discussed in Chapter 5, all control strategies focused on reducing the response of the

first mode of the continuum, and more specifically, the state associated with its displace-

ment. As a result, important reductions of the RMS values of the continuum’s midspan

relative displacements were achieved by both active and semiactive control systems.

Poor performance of passive techniques was observed.
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Although not specifically pursued by any of the control systems, important reductions in

the oscillator’s relative displacement were achieved by all control techniques. Experi-

ence gained with the simplified model of chapter 4, in which the displacements of the

upper mass (representative of the vehicle) increased, indicated we should not expect

good results regarding this response. However, when applied to the vehicle-bridge

model, the overall response of the system was reduced in such a way that even the oscil-

lator’s response was decreased. Moreover, because of their inability to introduce exter-

nal energy to the system, both semiactive and passive systems (which performed

similarly) highly outperformed the active control regarding this evaluation criterion.

Similar to the case of the oscillator’s displacement, accelerations of the continuum were

greatly reduced with respect to the uncontrolled case, even though the control algo-

rithms were not focused on reducing this aspect of the response. Again semiactive and

passive techniques performed similarly, but were both outperformed by the active con-

trol in most cases. 

As expected, the performance achieved with the MR-damper and with the variable ori-

fice damper, when commanded by their optimal algorithms, were very similar, the latter

being slightly more efficient in all cases. This result is due to the ideal model assumed to

simulate the variable damper, which gives the device the capacity to precisely track the

optimal force commanded by the control algorithm (whenever this force is dissipative).

However, when set to their passive modes, the MR-damper performed consistently bet-

ter than the variable damper.

As demonstrated through the results herein, the performance of the passive systems is

always better than the uncontrolled case. Thus, if any control action is to be taken with-

out a good estimation of the states, it is preferable to apply passive control rather than

applying an inaccurate control force or no control force at all. For this reason, the modi-

fication made to the control algorithms for Case 3 (bump present) improved the results
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obtained with the semiactive techniques compared to those obtained with active control.

However, an external disturbance of different characteristics than a bump (whose loca-

tion and properties can be easily determined) is possible in a vehicle-bridge system.

Other alternatives must be then considered. 

Remarkable tracking capabilities of the commanded force of the MR-damper were

achieved by introducing the changes to the algorithm that control the voltage provided.

A great amount of “chattering” inherently produced by a bang-bang algorithm was

avoided by introducing the small increments (or decrements) on the voltage, and setting

minimum tolerance between the commanded and provided forces. 

Some restrictions apply to the control algorithms developed in this thesis. For instance,

one assumption was the fact that only vehicles traveling at a moderate velocity were

considered, allowing the continuum to deflect statically and producing an overall

dynamic response that oscillates about the pseudostatic response. Under this condition,

the tracking algorithm performs properly as demonstrated with the numerical example

created in Chapter 5. However, for vehicles traveling at a high velocity, the overall

dynamic response of the continuum does not approach the pseudostatic response, and

further study is needed for these situations. In addition, for fast-moving oscillators, min-

imal interaction between the two subsystems occurs, limiting the control action of semi-

active devices. 

Future Work

One further direction in this research could be to consider several oscillators with differ-

ent properties, including velocities, masses, suspension characteristics, entering times

and even control capabilities. Even though previous traffic was considered in Cases 2

and 3, no interaction with other oscillators was considered. Simulations of this nature
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require much more computing effort and small variations on the mathematical model to

include the states associated with the new subsystems. 

Analyzing the behavior of the stresses of the continuum is an important factor to take

into account in future research. Pesterev and Bergman proposed a method that over-

comes the difficulty of expressing the non-continuous shear-force functions in terms of

the continuous shape functions used to describe the behavior of the beam [25]. Including

the force generated by the control device into this method could be a possibility to

achieve this objective. 

Several issues regarding the capabilities of the data acquisition system shall be

addressed in future research. For instance it was assumed in this study that accelerations

were perfectly measured using sensors along the continuum and the oscillator. However,

in real applications, noise in sensors is a factor that control systems should account for.

Moreover, the event of missing one or more signals from the sensors should also be con-

sidered. 
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